Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ivo Vencato, ${ }^{\text {a* }}$ Carlos K. Z. Andrade, ${ }^{\text {b }}$ Wender A. Silva ${ }^{\text {b }}$ and Carlito Lariucci ${ }^{\text {c }}$
${ }^{\text {a }}$ Unidade Universitária de Ciências Exatas e Tecnológicas - UEG, BR 153, Km 98, 75133-050 Anápolis, GO, Brazil, b'LaQMOS Instituto de Química - UnB, Caixa Postal 4478, 70910-970 Brasília, DF, Brazil, and ${ }^{\text {c Instituto de }}$ Física - UFG, Caixa Postal 131, 74001-970 Goiânia, GO, Brazil

Correspondence e-mail: vencato@if.ufg.br

Key indicators

Single-crystal X-ray study
$T=297 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.061$
$w R$ factor $=0.165$
Data-to-parameter ratio $=11.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(1,3-Benzodioxol-5-yl)-1-(4-methoxy-phenyl)prop-2-enone

The title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$, shows satisfactory cytotoxic activity against Artemia salina. Two non-classical intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds $[\mathrm{C} \cdots \mathrm{O}=3.273$ (2) and 3.302 (3) \AA] join the molecules alternately head-to-head and tail-to-tail across crystallographic inversion centres, resulting in a linear chain along the [1到1] direction.

Comment

Chalcones can be easily obtained from the aldol condensation of aromatic aldehydes and aromatic ketones. This class of compounds presents interesting biological properties, such as cytotoxicity (Lawrence et al., 2001), antiherpes activity (Phrutivorapongkul et al., 2003) and antitumour activity (Xia et al., 2000) and may be useful for the chemotherapy of Leishmaniasis (Pandey et al., 2005), among others. The title compound, (I), shows a satisfactory cytotoxic activity against Artemia salina. Other tests with E. coli and S. aurus are being carried out.

The crystal structure study of (I) was undertaken in order to establish the structure and conformation of the various groups. With this conformational study established, it will be quicker to carry out chemometric methods (multivariate statistics) to verify the results of the pharmacological tests (Camargo et al., 2003).

In the title molecule (Fig. 1 and Table 1), the spatial arrangement of the keto group $\mathrm{C} 7=\mathrm{O} 1$ and the olefinic double bond $\mathrm{C} 8=\mathrm{C} 9$ about the linking single bond $\mathrm{C} 7-\mathrm{C} 8$ is s-cis, as seen from the $\mathrm{O} 1=\mathrm{C} 7-\mathrm{C} 8=\mathrm{C} 9$ torsion angle of $12.9(3)^{\circ}$. The dihedral angle between the least-squares plane through the benzodioxol ring ($\mathrm{O} 2 / \mathrm{O} 3 / \mathrm{C} 10 \cdots \mathrm{C} 16$) and the benzene ring C1 \cdots C6 is 41.12 (4) ${ }^{\circ}$. The widening of the $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$ angle to $122.75(16)^{\circ}$ can be related to the short interatomic contact between atoms H5 and H8 (2.24 £). In the same way, the strain induced by the short $\mathrm{H} 8 \cdots \mathrm{H} 11$ contact $(2.20 \AA)$ results in a slight opening of the $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ angle to 127.33 (17) ${ }^{\circ}$.

We have found two entries with the chalcone skeleton type of (I) in the Cambridge Structural Database (CSD; Version 5.26; Allen, 2002), viz. refcodes CIBCOF $\left(\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{7}\right.$; Pridgen et al., 1999) and BAGXIR ($\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{ClO}_{6}$; Kerr et al., 2001). In both cases, the olefinic double bond is trisubstituted.

The former compound shows bond lengths and angles in good agreement with (I). The second compound contains two molecules in the asymmetric unit and the related bond distances and angles of the α, β-unsaturated ketone show some significant differences: the corresponding average bond distances are $\mathrm{C} 7=\mathrm{O} 1=1.256 \AA, \mathrm{C} 7-\mathrm{C} 8=1.473 \AA$ and $\mathrm{C} 9-$ $\mathrm{C} 10=1.474 \AA$, with bond angles at C6, C7, C8 and C9 in the range $123.0-127.8^{\circ}$.

Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed (Table 2). The molecules are linked alternately head-to-head and tail-to-tail across inversion centres, resulting in a linear chain along the [1苂1] direction, as shown in Fig. 2. A contact between O 1 and $\mathrm{C} 16^{\mathrm{i}}$ of the neighbouring molecular chain [3.800 (3) Å; symmetry code: (i) $-1+x, 1+y, z$] probably contributes to the relatively large $\mathrm{C} 1 \cdots \mathrm{C} 6-\mathrm{C} 7=\mathrm{O} 1$ torsion angle of $22.3(3)^{\circ}$.

Experimental

Compound (I) was obtained in 91% yield by the aldol condensation of piperonal, (1), and 4-methoxyacetophenone, (2), using a method described previously by Lawrence et al. (2001). Prismatic crystals were obtained from an EtOH solution (m.p. 403 K). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.88$ ($s, 3 \mathrm{H}, \mathrm{H} 17$), $6.02(s, 2 \mathrm{H}, \mathrm{H} 16), 6.82-6.85$ $(d, J=7.79 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$ and H4), 6.95-7.00 ($m, 1 \mathrm{H}, \mathrm{H} 12$), $7.10-7.12$ $(d d, J=1.87$ and $8.41 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 11), 7.16-7.17(d, J=1.87 \mathrm{~Hz}, 1 \mathrm{H}$, H15), 7.35-7.41 ($d, J=15.88 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 8), 7.70-7.75(d, J=15.58 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 9$), $7.99-8.05$ ($m, 2 \mathrm{H}, \mathrm{H} 1$ and H 5); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.5(\mathrm{C}=\mathrm{O}), 163.3(\mathrm{C}), 149.7(\mathrm{C}), 148.3(\mathrm{C}), 143.8(\mathrm{CH}), 131.2$ $(\mathrm{CH}), 130.7(\mathrm{CH}), 129.5(\mathrm{C}), 125.0(\mathrm{CH}), 119.9(\mathrm{CH}), 113.8(\mathrm{CH})$, $108.6(\mathrm{CH}), 106.6(\mathrm{CH}), 101.6\left(\mathrm{CH}_{2}\right), 55.5\left(\mathrm{CH}_{3}\right)$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{4}$
$M_{r}=282.28$
Triclinic, $P \overline{1}$
$a=6.0987(9) \AA$
$b=7.463$ (1) \AA
$c=14.932$ (1) \AA
$\alpha=84.18(1)^{\circ}$
$\beta=89.65(1)^{\circ}$
$\gamma=79.90(1)^{\circ}$
$V=665.60(14) \AA^{3}$

Data collection

[^1]
Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.061$
$w R\left(F^{2}\right)=0.165$
$S=1.13$
2343 reflections
209 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.408 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=18.1-44.5^{\circ} \\
& \mu=0.83 \mathrm{~mm}^{-1} \\
& T=297(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.35 \times 0.35 \times 0.28 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& \theta_{\max }=67.1^{\circ} \\
& h=-7 \rightarrow 7 \\
& k=-8 \rightarrow 8 \\
& l=0 \rightarrow 17 \\
& 2 \text { standard reflections } \\
& \quad \text { frequency: } 120 \mathrm{~min} \\
& \quad \text { intensity decay: }<1 \%
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1073 P)^{2}\right. \\
& \quad+0.1215 P] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.41 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.41 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 }
\end{aligned}
$$ Extinction coefficient: 0.330 (19)

Figure 1
View of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The packing, viewed almost perpendicular to the [100] axis; the [010] axis is vertical and [001] is horizontal pointing to the right. Intermolecular C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines. A short contact is also shown between atom O1 and the neighbouring chain.

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C7	$1.224(2)$	O4-C17	$1.412(3)$
O2-C13	$1.367(2)$	C6-C7	$1.485(2)$
O2-C16	$1.428(2)$	C7-C8	$1.481(3)$
O3-C14	$1.377(2)$	C8-C9	$1.330(3)$
O3-C16	$1.424(2)$	C9-C10	$1.466(2)$
O4-C3	$1.358(2)$		
C13-O2-C16	$105.84(13)$	C8-C7-C6	$118.28(16)$
C14-O3-C16	$105.91(13)$	C9-C8-C7	$121.63(17)$
C3-O4-C17	$118.84(15)$	C8-C9-C10	$127.33(17)$
C5-C6-C7	$122.75(16)$		
C1-C6-C7-O1	$22.3(3)$	C7-C8-C9-C10	$-176.36(15)$
O1-C7-C8-C9	$12.9(3)$	C8-C9-C10-C11	$7.7(3)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 16-\mathrm{H} 16 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.95(2)$	$2.56(2)$	$3.273(2)$	$132.0(18)$
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O}^{\mathrm{ii}}$	$0.99(2)$	$2.43(3)$	$3.302(3)$	$146(2)$

Symmetry codes: (i) $-x+2,-y-1,-z+1$; (ii) $-x+1,-y+3,-z$.
All H atoms, except those bonded to $\mathrm{C} 9, \mathrm{C} 16$ and C 17 , were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances constrained to $0.93 \AA$, and with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$. The H atoms bonded to C 16 and C 17 were found in a difference map and their positions were refined with soft restraints $\mathrm{H} \cdots \mathrm{H}=1.57(4) \AA$ and $\mathrm{C}-\mathrm{H}=0.96$ (4) \AA, and with $U_{\text {iso }}(\mathrm{H} 16 \mathrm{~A} /$ $\mathrm{H} 16 B)=1.2 U_{\text {eq }}(\mathrm{C} 16)$ and $U_{\text {iso }}(\mathrm{H} 17 A / \mathrm{H} 17 B / \mathrm{H} 17 C)=1.5 U_{\text {eq }}(\mathrm{C} 17)$. Additional restraints were applied for $\mathrm{H} 16 A$ and $\mathrm{H} 17 A$ which are involved in hydrogen bonds, in order to ensure a sensible geometry for the methylene and methyl groups: $\mathrm{O} 3 \cdots \mathrm{H} 16 A=1.95$ (4) \AA and $\mathrm{O} 4 \cdots \mathrm{H} 17 A=1.95$ (4) A. Finally, H9 was found in a difference map and its position refined freely; $U_{\text {iso }}(\mathrm{H} 9)=1.2 U_{\text {eq }}(\mathrm{C} 9)$.

Data collection: CAD-4/PC Software (Enraf-Nonius, 1993); cell refinement: CAD-4/PC Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Fundação de Apoio à Pesquisa-FUNAPE/UFG.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Camargo, A. J., Honório, K. M., Mercadante, R., Molfetta, F. A., Alves, C. N. \& da Silva, A. B. F. (2003). J. Braz. Chem. Soc. 14, 809-814.
Enraf-Nonius (1993). CAD-4/PC Software. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kerr, P. J., Pyke, S. M., Ward, A. D. \& Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struc. 216, 558-560.
Lawrence, N. J., Rennison, D., McGown, A. T., Ducki, S., Gul, L. A., Hadfield, J. A. \& Khan, N. (2001). J. Comb. Chem. 3, 421-426.

Pandey, S., Suryawanshi, S. N., Gupta, S. \& Srivastava, V. M. L. (2005). Eur. J. Med. Chem. 40, 751-756.
Phrutivorapongkul, A., Lipipun, V., Ruangrungsi, N., Kirtikara, K., Nishikawa, K., Maruyama, S., Watanabe, T. \& Ishikawa, T. (2003). Chem. Pharm. Bull. 51, 187-190.
Pridgen, L. N., Huang, K., Shilcrat, S., Tickner-Eldridge, A., DeBrosse, C. \& Haltiwanger, R. C. (1999). Synlett, pp. 1612-1614.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xia, Y., Yang, Z.-Y., Xia, P., Bastow, K. F., Nakanishi, Y. \& Lee, K.-H. (2000). Bioorg. Med. Chem. Lett. 10, 699-701.

[^0]: © 2006 International Union of Crystallography All rights reserved

[^1]: Enraf-Nonius CAD-4 diffractometer non-profiled $\omega / 2 \theta$ scans Absorption correction: none 2435 measured reflections 2343 independent reflections 2234 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.009$

